An adaptive, formally second order accurate version of the immersed boundary method
نویسندگان
چکیده
Like many problems in biofluid mechanics, cardiac mechanics can be modeled as the dynamic interaction of a viscous incompressible fluid (the blood) and a (visco-)elastic structure (the muscular walls and the valves of the heart). The immersed boundary method is a mathematical formulation and numerical approach to such problems that was originally introduced to study blood flow through heart valves, and extensions of this work have yielded a three-dimensional model of the heart and great vessels. In the present work, we introduce a new adaptive version of the immersed boundary method. This adaptive scheme employs the same hierarchical structured grid approach (but a different numerical scheme) as the twodimensional adaptive immersed boundary method of Roma et al. [A multilevel self adaptive version of the immersed boundary method, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York University, 1996; An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509–534] and is based on a formally second order accurate (i.e., second order accurate for problems with sufficiently smooth solutions) version of the immersed boundary method that we have recently described [B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75–105]. Actual second order convergence rates are obtained for both the uniform and adaptive methods by considering the interaction of a viscous incompressible flow and an anisotropic incompressible viscoelastic shell. We also present initial results from the application of this methodology to the three-dimensional simulation of blood flow in the heart and great vessels. The results obtained by the adaptive method show good qualitative agreement with simulation results obtained by earlier non-adaptive versions of the method, but the flow in the vicinity of the model heart valves indicates that the new methodology provides enhanced boundary layer resolution. Differences are also observed in the flow about the mitral valve leaflets. 2006 Elsevier Inc. All rights reserved. MSC: 65M06; 65M50; 74S20; 76D05; 92C10; 92C35
منابع مشابه
Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity
This paper describes a formally second-order accurate version of the immersed boundary method and its application to the computer simulation of blood ow in a three-dimensional model of the human heart.
متن کاملSimulating an Elastic Ring with Bend and Twist by anAdaptiveGeneralized Immersed BoundaryMethod
Many problems involving the interaction of an elastic structure and a viscous fluid can be solved by the immersed boundary (IB) method. In the IB approach to such problems, the elastic forces generated by the immersed structure are applied to the surrounding fluid, and the motion of the immersed structure is determined by the local motion of the fluid. Recently, the IB method has been extended ...
متن کاملOn the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems
The immersed boundary method is both a mathematical formulation and a numerical scheme for problems involving the interaction of a viscous incompressible fluid and a (visco-)elastic structure. In [M.-C. Lai, Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, 1998; M...
متن کاملAn Immersed Boundary Method with FormalSecond-Order Accuracy and ReducedNumerical Viscosity
A formally second-order accurate immersed boundary method is presented and tested in this paper. We apply this new scheme to simulate the flow past a circular cylinder and study the effect of numerical viscosity on the accuracy of the computation by comparing the numerical results with those of a first-order method. The numerical evidence shows that the new scheme has less numerical viscosity a...
متن کاملThe Immersed Interface Method forthe Navier–Stokes Equationswith Singular Forces
Peskin’s Immersed Boundary Method has been widely used for simulating many fluid mechanics and biology problems. One of the essential components of the method is the usage of certain discrete delta functions to deal with singular forces along one or several interfaces in the fluid domain. However, the Immersed Boundary Method is known to be first-order accurate and usually smears out the soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 223 شماره
صفحات -
تاریخ انتشار 2007